IMPLEMENTASI METODE NAÏVE BAYES CLASSIFIER UNTUK KLASIFIKASI STATUS GIZI STUNTING PADA BALITA

Authors

  • Monica Yoshe Titimeidara Universitas Stikubank
  • Wiwien Hadikurniawati Universitas Stikubank

DOI:

https://doi.org/10.33884/jif.v9i01.3741

Keywords:

klasifikasi, stunting, Naive Bayes Classifier

Abstract

Stunting describes a state of chronic malnutrition during growth and development since early life. This situation is represented by the height z-score for age (TB/U), which is less than minus 2 standard deviations (SD), based on WHO growth standards.Data from the Semarang City Health Office stated that the results of monitoring nutritional status based on indicators of body length for age (PB/U) or height for age (TB/U) the incidence of stunting in the city of Semarang was 20.37%. This research will make it easier to determine information regarding the classification of stunting nutritional status in toddlers. Stunting data will be processed and used as information regarding normal or not stunting nutritional status in toddlers. With this information, it can make it easier to collect data on toddlers who experience stunting nutritional status, besides that it can also be used to hold counseling to increase stunting nutritional levels and prevent stunting in toddlers by using the Naive Bayes Classifier. The accuracy result of the Naive Bayes Classifier method in classifying stunting nutritional status is 88%

References

[1] Ni'mah, K., & Nadhiroh, S. R., (2015) Faktor yang Berhubungan Dengan Kejadian Stunting pada Balita. Jurnal Media Gizi Indonesia, 10(1) Januari-Juni, pp.13-19..
[2] Wahyudi, R., & Sufriani., (2018) Pertumbuhan Dan Perkembangan Balita Stunting. JIM Fkep. 3(1), pp. 56–62.
[3] Kemenkes RI., (2020) Pedoman Gizi Seimbang. Direktorat Bina Gizi dan KIA. Jakarta.
[4] Anindita, P., (2012) Hubungan Tingkat Pendidikan Ibu, Pendapatan Keluarga, Kecukupan Protein dan Zinc dengan Stunting (Pendek) Pada Balita Usia 6-35 Bulan di Kecamatan Tembalang Kota Semarang. Jurnal Kesehatan Masyarakat. 1(2). pp.617-626
[5] Kusrini & Luthfi, E.T., (2015) Algoritma Data Mining. Andi. Yogyakarta.
[6] Han, J. & Kamber, M. (2016) Data Mining: Concept and Techniques, Third Edition. Morgan Kaufmann Publishers. Waltham
[7] Adriani, M. (2018) Pengantar Gizi. Kencana Prenada Media. Jakarta.
[8] Simanjuntak, P., & Elisa, E. (2019). Data Mining Untuk Menentukan Pemilihan Celular Card Di Kota Batam. Journal Information System Development (ISD), 4(2).
[9] Santosa, B. (2015) Data Mining: Teknik Pemanfaatan Data Untuk Keperluan Bisnis. GrahaIlmu. Yogyakarta.
[10] Hermawati, F.A. (2016) DataMining. Andi. Yogyakarta.

Downloads

Published

2021-06-17

How to Cite

Titimeidara, M. Y., & Hadikurniawati, W. (2021). IMPLEMENTASI METODE NAÏVE BAYES CLASSIFIER UNTUK KLASIFIKASI STATUS GIZI STUNTING PADA BALITA. JURNAL ILMIAH INFORMATIKA, 9(01), 54–59. https://doi.org/10.33884/jif.v9i01.3741