PERBANDINGAN ALGORITMA CANNY EDGE DETECTION DAN PREWITT PADA DETEKSI STADIUM DIABETIK RETINOPATI

Authors

  • Vina Ardelia Effendy Universitas Pancasila
  • Febri Maspiyanti Lecturer

DOI:

https://doi.org/10.33884/jif.v9i02.3762

Keywords:

Canny Edge Detection, Diabetic Retinopathy, Retina, Artificial Neural Networks, Prewitt

Abstract

Diabetes is a serious threat to human health. In 2016, non-communicable diseases including Diabetes accounted for 70% of the total causes of death in the world. Diabetes if left unchecked will cause complications that can attack other organs to cause blindness called Diabetic Retinopathy (DR). Ophthalmologists make a grouping of diabetic characteristics of retinopathy by observing the retinal images of the eye taken using a fundus camera. This method requires a long time in the observation that allows errors in making observations, so image processing is needed to detect and classify the stage of diabetic retinopathy suffered by the patient. Thus, this research aims to help the process of early treatment of patients with diabetic retinopathy so as not to cause blindness. The data used in this study is DB0 Diaret data with a pixel size of 128 x 104 and the amount of data is 131. The methods used in this system include Canny Edge Detection, Prewitt, and stadium readings using Artificial Neural Network Algorithms. In this study the highest accuracy results obtained on the Canny Edge Detection method with a value of 90% while the Prewitt method has a 79% result. So, we get the conclusion that Canny Edge Detection is considered better.

References

[1] Kementerian Kesehatan RI .2018. CEGAH, CEGAH, dan CEGAH: Suara Dunia Perangi Diabetes[Artikel]. Kementerian Kesehatan Republik Indonesia, Jakarta 2018.
[2] Desti Fitriati, Amir Murtako.2016.Implementation of Diabetic Retinopathy Screening Using Rrealtime Data. IEEE ( Oktober 2016), DOI: 10,1109/IAC.2016.7905715.
[3] Putranto Taufik Galang Adi, Candradewi Ika.2018. Sistem Klasifikasi Tingkat Keparahan Diabetik retinopati Menggunakan Support Vector Machine. Universitas Gadjah Mada Yogyakarta, April 2018. DOI: 10,22146/ijeis.31206.
[4] Sri Kusumadewi. Artificial Intelligence (Teknik dan Penerapannya). Graha Ilmu, Yogyakarta.
[5] Johanes Widagdho Y, Achmad Wahid K. 2014. Perbandingan Penggunaan Deteksi Tepi Dengan Metode Laplace, Sobel Dan Prewit Dan Canny Pada Pengenalan Pola. Techno.COM. Vol. 13, No. 3, Agustus 2015.
[6] Widodo Budiharto. 2018. Pemograman Python untuk Ilmu Komputer dan Teknik. ANDI, Yogyakarta.
[7] Eko Prasetyo. 2014. Data Mining – Mengolah Data Menjadi Informasi Menggunakan Matlab. ANDI, Yogyakarta.
[8] Fong DS, Aiello L, Gardner TW, et al. Retinopathy in diabetes. Diabetes care. 2004;27(1): 84-87.
[9] Imageret. 2007. DIARETDB0 [Internet]. Standard Diabetic Retinopathy DatabaseCalibration level 0, [dikutip 24 Juli 2019]. Tersedia dari : https://www.it.lut.fi/project/imageret/diaretdb0/.
[10] Rafael C. Gonzalez, Richard E. Woods. 2008. Digital Image Processing (3rd. ed.). Pearson. Prentice Hall, Inc., New Jersey.
[11] J.J.Siang.2004.Jaringan Syaraf Tiruan dan Pemogramannya Menggunakan MATLAB. Penerbit Andi. Yogyakarta.
[12] Cahyana, M. A. K., & Simanjuntak, P. (2020). Aplikasi Sistem Pakar untuk Mendiagnosis Penyakit Kusta dengan Metode Forward Chaining. Computer and Science Industrial Engineering (COMASIE), 3(1), 31-37.

Downloads

Published

2021-09-02

How to Cite

Effendy, V. A., & Maspiyanti, F. (2021). PERBANDINGAN ALGORITMA CANNY EDGE DETECTION DAN PREWITT PADA DETEKSI STADIUM DIABETIK RETINOPATI. JURNAL ILMIAH INFORMATIKA, 9(02), 87–94. https://doi.org/10.33884/jif.v9i02.3762