The ANALISIS SENTIMEN DENGAN KLASIFIKASI NAÏVE BAYES PADA REVIEW HOTEL TRIPADVISOR

Authors

  • Suparyati Suparyati Universitas Amikom Yogyakarta
  • Agus Fathurrahman Universitaas Amikom Yogyakarta

DOI:

https://doi.org/10.33884/jif.v10i01.4524

Keywords:

Sentimen Analisis, Naïve Bayes, Machine learning, Text Mining

Abstract

In this era of rapidly growing data digitization, people are facilitated by the existing reviews to decide something. Reviews about something positive, of course, will also have a positive impact on those being reviewed. In this study, the tripadvisor hotel reviews dataset is taken from the Kaggle dataset. The classification method used is nave Bayes. The first thing to do after dataset retrieval is data preprocessing such as cleaning data by changing text to lowercase, eliminating numbers, eliminating double spaces, tokenization, eliminating stopwords and lemmatization. From the results of the classification with nave Bayes, the results obtained with an accuracy of 95.6%, which means that the results of the predictions are very good. For future research, other classification methods will be used to compare and find the best accuracy results.

References

Mulajati, M., & Hakim, R. F. (2017). Sentiment Analysis on online reviews using Naïve Bayes Classifier Method and Text Association (Case Study: Garuda Indonesia Airlines Passengers Reviews on TripAdvisor Site). Indian Journal of Scientific Research, 274-281.

Yoon, Y., Kim, A. J., Kim, J., & Choi, J. (2019). The effects of eWOM characteristics on consumer ratings: evidence from TripAdvisor. com. International Journal of Advertising, 38(5), 684-703.

M. O. Pratama et al., The sentiment analysis of Indonesia commuter line using machine learning based on twitter data, J. Phys. Conf. Ser., vol. 1193, no. 1, 2019.

Razia Sulthana, A. K. Jaithunbi, and L. Sai Ramesh, Sentiment analysis in twitter data using data analytic techniques for predictive modelling, J. Phys. Conf. Ser., vol. 1000, no. 1, 2018.

Y. Nurdiansyah, S. Bukhori, and R. Hidayat, Sentiment analysis system for movie review in Bahasa Indonesia using naive bayes classifier method, J. Phys. Conf. Ser., vol. 1008, no. 1, 2018.

S. Wahyu Handani, D. Intan Surya Saputra, Hasirun,R. Mega Arino, and G. Fiza Asyrofi Ramadhan, -Sentiment analysis for gojek on google play store, J. Phys. Conf. Ser., vol. 1196, no. 1, 2019.

J. Ling, T. B. Oka, and I. P. E. N. Kencana, -Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Dengan Seleksi Fitur Chi Square, E-Jurnal Mat., vol. 3, no. 3, pp. 92–99, 2014.

S. Aji et al., -Review Sentiment Analysis of World Class Hotel Using Naive Bayes Classifier And Particle Swarm Optimization Method, 2019.

S. K and F. F, Survey on aspect-level sentiment analysis, IEEE Trans. Knowl. Data Eng., vol. 28, no. 3, pp. 813–830, 2016.

T. INUI and M. OKUMURA, A Survey of Sentiment Analysis, J. Nat. Lang. Process., vol. 13, no. 3, pp. 201–241, 2006.

Valdivia, A., Luzón, M. V., & Herrera, F. (2017). Sentiment analysis in tripadvisor. IEEE Intelligent Systems, 32(4), 72-77.

Laksono, R. A., Sungkono, K. R., Sarno, R., & Wahyuni, C. S. (2019, July). Sentiment analysis of restaurant customer reviews on tripadvisor using naïve bayes. In 2019 12th International Conference on Information & Communication Technology and System (ICTS) (pp. 49-54). IEEE.

Chang, Y. C., Ku, C. H., & Chen, C. H. (2019). Social media analytics: Extracting and visualizing Hilton hotel ratings and reviews from TripAdvisor. International Journal of Information Management, 48, 263-279.

Borges-Tiago, M. T., Arruda, C., Tiago, F., & Rita, P. (2021). Differences between TripAdvisor and Booking. com in branding co-creation. Journal of Business Research, 123, 380-388.

F. C. Permana, Y. Rosmansyah, and A. S. Abdullah, Naive Bayes as opinion classifier to evaluate tudentsatisfaction based on student sentiment in Twitter Social Media, J. Phys. Conf. Ser., vol. 893, no. 2017.

Azzahra, S. A., & Wibowo, A. (2020). Analisis Sentimen Multi-Aspek Berbasis Konversi Ikon Emosi dengan Algoritme Naïve Bayes untuk Ulasan Wisata Kuliner Pada Web Tripadvisor. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(4), 737-744.

E. U. Artha et al., Klasifikasi Model Percakapan Twitter Mengenai Ujian Nasional, vol. 03, no. 01, pp. 121–125, 2018.

Simanjuntak, P., Pangaribuan, H., & Syastra, M. T. (2021). Data Mining Rekomendasi Pemakaian Skincare. MEANS (Media Informasi Analisa dan Sistem), 80-83.

R. Zhen, Y. Jin, Q. Hu, Z. Shao, and N. Nikitakos, Maritime Anomaly Detection within Coastal Waters Based on Vessel Trajectory Clustering and Naïve Bayes Classifier, J. Navig., vol. 70, no. 3, pp. 648– 670, 2017.

Alam, M. H., Ryu, W.-J., Lee, S., 2016. Joint multi-grain topic senti- ment: modeling semantic aspects for online reviews. Information Sci- ences 339, 206–223.

Downloads

Published

2022-03-01

How to Cite

Suparyati, S., & Fathurrahman, A. . (2022). The ANALISIS SENTIMEN DENGAN KLASIFIKASI NAÏVE BAYES PADA REVIEW HOTEL TRIPADVISOR. JURNAL ILMIAH INFORMATIKA, 10(01), 20–24. https://doi.org/10.33884/jif.v10i01.4524