SISTEM DIAGNOSA PENYAKIT IKAN MENGGUNAKAN METODE CASE BASED REASONING DENGAN ALGORITMA SIMILARITAS SORGENFREI DAN K-NEAREST NEIGHBOR
DOI:
https://doi.org/10.33884/jif.v10i01.4634Keywords:
Expert System, CBR, Sorgenfrei, K-nn, Betta Fish DiseaseAbstract
The increasing interest in betta fish lately has triggered many people to cultivate betta fish, and the prospects for the future are quite promising every year because they always increase profits. But behind that, betta fish care is not easy because betta fish are animals that are susceptible to disease. To improve the quality of Betta fish and reduce mortality due to disease, experienced fishery experts are needed. Many cultivators are still confused in dealing with betta fish that are attacked by diseases, for that a system was created that can help betta fish farmers recognize betta fish diseases by creating an expert system. The method used is Case-Based Reasoning using the similarity algorithm Sorgenfrei and coupled with K-Nearest Neighbor. This second method and algorithm can be used to diagnose the disease from the symptoms in the database. Based on the research that has been carried out, the results of consultation by the user by selecting some of the symptoms experienced produce a similarity value of 0.8695 and the system will provide a solution according to the disease.
References
Sarjito, S. B. Prayitno, and A. H. C. Haditomo, “Buku Pengantar Parasit dan Penyakit Ikan,” Fak. Perikan. dan Ilmu Kelaut. Univ. Diponegoro, pp. 1–90, 2013.
H. I. Pratiwi and R. Kamardi, “Pengembangan Sistem Web Sebagai Diagnosa Dini Penyakit Alergi Kulit Dermatitis Atopik Dengan Metode Forward Chaining,” Widyakala J., vol. 6, no. 2, p. 167, 2019, doi: 10.36262/widyakala.v6i2.219.
N. Mariana, R. Sriartati Redjeki, and J. Alfa Razaq, “PENERAPAN ALGORITMA k-NN (nearest Neighbor) UNTUK DETEKSI PENYAKIT (KANKER SERVIKS),” J. Din. Inform., vol. 7, no. 1, pp. 26–34, 2015.
G. Gupita, B. Harijanto, and Y. Ariyanto, “Pengembangan Sistem Pakar Pendeteksi Penyakit Pada Kucing Dengan Metode Case Based Reasoning Dan Certainty Factor Berbasis Android,” J. Inform. Polinema, vol. 3, no. 2, p. 8, 2017, doi: 10.33795/jip.v3i2.8.
F. O. Sutanto, J. Purwadi, and R. Delima, “Implementasi Case Based Reasoning Untuk Sistem Diagnosis Penyakit Anjing,” J. Inform., vol. 7, no. 2, 2011, doi: 10.21460/inf.2011.72.101.
A. Setiawan and S. Wibisono, “Case Based Reasoning Untuk Mendiagnosa Penyakit Dan Hama Pada Tanaman Mangga Menggunakan Algoritma Similaritas Sorgenfrei,” Dinamik, vol. 23, no. 1, pp. 1–10, 2018, doi: 10.35315/dinamik.v23i1.7172.
S. W. Nasution, N. A. Hasibuan, and P. Ramadhani, “Sistem Pakar Diagnosa Anoreksia Nervosa Menerapkan Metode Case Based Reasoning,” Konf. Nas. Teknol. Inf. dan Komput., vol. I, no. 1, pp. 52–56, 2017, [Online]. Available: http://www.stmik-budidarma.ac.id/ejurnal/index.php/komik/article/download/472/413%0A.
Minarni and I. Warman, “Sistem Pakar Identifikasi Penyakit Tanaman Padi Menggunakan Case-Based Reasoning,” Semin. Nas. Apl. Teknol. Inf., no. 5 Agustus 2017 ISSN: 1907 – 5022, pp. 28–32, 2017.
Cahyana, M. A. K., & Simanjuntak, P. (2020). Aplikasi Sistem Pakar untuk Mendiagnosis Penyakit Kusta dengan Metode Forward Chaining. Computer and Science Industrial Engineering (COMASIE), 3(1), 31-37.
M. F. N. Ikhsan and R. C. N. Santi, “Sistem Pakar Diagnosa Penyakit Gigi Dan Mulut Manusia Menggunakan Metode Case Based Reasoning Similaritas Sorgenfrei Dengan K-Nn,” pp. 978–979, 2020.
Wiranto, N. A. Hasibuan, and S. D. Nasution, “Sistem Pakar Untuk Mendeteksi Kerusakan Amplifier Menggunakan Metode Case Based Reasoning,” vol. 18, pp. 127–133, 2019.
T. Istiawan et al., “SISTEM PAKAR DIAGNOSIS PENYAKIT IKAN CUPANG MENGGUNAKAN Prodi Teknik Informatika , Fakultas Teknik , Universitas Muhammdiyah Jember.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 JURNAL ILMIAH INFORMATIKA
This work is licensed under a Creative Commons Attribution 4.0 International License.