KLASIFIKASI DIABETES PADA WANITA MENGGUNAKAN METODE NAIVE BAYES CLASSIFIER
DOI:
https://doi.org/10.33884/jif.v10i01.4705Keywords:
Klasifikasi Diabetes , Wanita , Naïve Bayes ClassifierAbstract
The report from Riskesdas shows that there is a 2x increase in diabetes every year in Indonesia. This is due to an increase in factors such as human population, age, obesity, irregular eating patterns and lack of physical activity. The increase in a factor that causes diabetes in Indonesia must be prevented. The first step in preventing diabetes is to detect the risk factors for diabetes that may occur. Influencing factors include behavioral factors and sociodemographic factors The increase in diabetes in a country is due to late identified factors. The number of factors that are collected in order to detect whether a person has diabetes or not requires a fairly large data processing system. The data used in this study are diabetes data obtained from the Pima Indian Diabetes Database with attributes of pregnant, glucose, diastolic, triceps, insulin, BMI, history of diabetes, age and 300 data output. The Naive Bayes Classifier method can be used to classify diabetes in women based on pregnant, glucose, diastolic, triceps, insulin, BMI, history of diabetes, age and output. The accuracy result of the Naive Bayes Classifier method in classifying diabetes in women is 84% of 300 data which is divided into 2, namely 275 data as training data and 25 data as test data.
References
F. A. Hermawati, Data Mining, Yogyakarta: Andi, 2016.
Kusrini dan E. T. Luthfi, Algoritma Data Mining, Yogyakarta: Andi, 2015.
D. R. Ente, S. A. Thamrin, H. Kuswanto, S. Arifin dan Andreza, “Klasifikasi Faktor Penyebab Penyakit Diabetes Melitus Di Rumah Sakit UNHAS Menggunakan Algoritma C4.5,” Indonesian Journal of Statistics and Its Applications , vol. IV, no. 1, pp. 80-88, 2020.
F. Aris dan Benyamin, “Penerapan Data Mining Untuk Identifikasi Penyakit Diabetes Melitus Dengan Menggunakan Metode Klasifikasi,” Router Research, vol. I, no. 1, pp. 1-6, 2019.
R. N. Devita, H. W. Herwanto dan A. P. Wibawa, “Perbandingan Kinerja Metode Naive Bayes Dan K-Nearest Neighbor Untuk Klasifikasi Artikel Berbahasa Indonesia,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. V, pp. 427-434, 2018.
M. Siddik, R. N. Putri dan Y. Desnelita, “Klasifikasi Kepuasan Mahasiswa Terhadap Pelayanan Perguruan Tinggi Menggunakan Algoritma Naïve Bayes,” Journal of Information Technology and Computer Science, vol. III, pp. 162-166, 2020.
Simanjuntak, P., Pangaribuan, H., & Syastra, M. T. (2021). Data Mining Rekomendasi Pemakaian Skincare. MEANS (Media Informasi Analisa dan Sistem), 80-83.
Y. P. Astuti, U. Sudibyo, A. W. Kurniawan dan Y. Rahayu, “Algoritma Naive Bayes Dengan Fitur Seleksi Untuk Mengetahui Hubungan Variabel Nilai Dan Latar Belakang Pendidikan,” Simetris, vol. IX, pp. 597-602, 2018.
D. W. Nugraha, A. E. Dodu dan N. Chandra, “Klasifikasi Penyakit Stroke Menggunakan Metode Naive Bayes Classifier (Studi Kasus Pada Rumah Sakit Umum Daerah Undata Palu),” Semantik, vol. III, pp. 13-22, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 JURNAL ILMIAH INFORMATIKA
This work is licensed under a Creative Commons Attribution 4.0 International License.