PENERAPAN ALGORITMA K-NEAREST NEIGHBOR DALAM KLASIFIKASI JUDUL BERITA HOAX

Authors

  • Muhammad Diki Hendriyanto Universitas Singaperbangsa Karawang
  • Betha Nurina Sari Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.33884/jif.v10i02.5477

Keywords:

Hoax, KNN, classification

Abstract

With the rapid development of information technology, especially in Indonesia, information is more easily obtained through online media. Therefore, the dissemination of information in online media becomes uncontrollable and a lot of information is not in accordance with the facts or can be said to be a hoax. Readers should be more careful when reading news headlines to avoid hoaxes. The purpose of this research is to find out how to apply the K-Nearest Neighbor (KNN) algorithm in classifying news including hoaxes or not hoaxes. In the process, the classification of hoaxes or non-hoaxes uses the KDD method in text mining and goes through several stages, namely preprocessing, word weighting with TF-IDF and classification using the KNN algorithm. There are 3 scenarios in the data split process, namely 90:10, 80:20, and 70:30. Evaluation is done by using a confusion matrix. The results of this study obtained the highest accuracy of 93.33% with a k value of 3 in the 90:10 scenario. So, the K-Nearest Neighbor algorithm is suitable for classifying hoax news titles.

References

R. Sagita, U. Enri, and A. Primajaya, “Klasifikasi Berita Clickbait Menggunakan K-Nearest Neighbor (KNN),” JOINS (Journal Inf. Syst., vol. 5, no. 2, pp. 230–239, 2020, doi: 10.33633/joins.v5i2.3705.

D. A. Fauziah, A. Maududie, and I. Nuritha, “Klasifikasi Berita Politik Menggunakan Algoritma K-nearst Neighbor,” Berk. Sainstek, vol. 6, no. 2, p. 106, 2018, doi: 10.19184/bst.v6i2.9256.

B. K. Palma, D. T. Murdiansyah, and W. Astuti, “Klasifikasi Teks Artikel Berita Hoaks Covid-19 dengan Menggunakan Algotrima K- Nearest Neighbor,” vol. 8, no. 5, pp. 10637–10649, 2021.

H. Mustofa and A. A. Mahfudh, “Klasifikasi Berita Hoax Dengan Menggunakan Metode Naive Bayes,” Walisongo J. Inf. Technol., vol. 1, no. 1, p. 1, 2019, doi: 10.21580/wjit.2019.1.1.3915.

S. Ernawati and R. Wati, “Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel,” J. Khatulistiwa Inform., vol. VI, no. 1, pp. 64–69, 2018, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/khatulistiwa/article/view/3802/2626.

A. Nugraha, pratama dwi,, Said al faraby, “Klasifikasi Dokumen Menggunakan Metode k-Nearest Neighbor (kNN) Dengan Information Gain,” eProceedings Eng., vol. 5, no. 1, pp. 1541–1550, 2018.

G. M and V. Mesyura, “Fake news detection using naive Bayes classifier,” First Ukr. Conf. Electr. Comput. Eng., 2017.

A. Rahmadhany, A. Aldila Safitri, and I. Irwansyah, “Fenomena Penyebaran Hoax dan Hate Speech pada Media Sosial,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 3, no. 1, pp. 30–43, 2021, doi: 10.47233/jteksis.v3i1.182.

A. Afriza and J. Adisantoso, “Metode Klasifikasi Rocchio untuk Analisis Hoax Rocchio Classification Method for Hoax Analysis,” J. Ilmu Komput. Agri-Informatika, vol. 5, pp. 1–10, 2018, [Online]. Available: http://journal.ipb.ac.id/index.php/jika.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.

C. Dhaneswara, Y. Azhar, and N. Hayatin, “Deteksi Berita Hoax Pada Dokumen Berbahasa Indonesia Menggunakan Metode Modified K - Nearest Neighbor,” Semin. Nas. Teknol. dan Rekayasa 2020, pp. 165–170, 2020.

D. Ariyanti and K. Iswardani, “Teks Mining untuk Klasifikasi Keluhan Masyarakat Pada Pemkot Probolinggo Menggunakan Algoritma Naïve Bayes,” J. IKRA-ITH Inform., vol. 4, no. 3, pp. 125–132, 2020.

A. Rahmat Dian Nugraha, K. Auliasari, and Y. Agus Pranoto, “Implementasi Metode K-Nearest Neighbor (KNN) Untuk Seleksi Calon Karyawan Baru (Studi Kasus : BFI Finance Surabaya),” JATI (Jurnal Mhs. Tek. Inform., vol. 4, no. 2, pp. 14–20, 2020, doi: 10.36040/jati.v4i2.2656.

B. Das and S. Chakraborty, “An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation,” 2018, [Online]. Available: http://arxiv.org/abs/1806.06407.

Simanjuntak, P., & Elisa, E. (2019). Data Mining Untuk Menentukan Pemilihan Celular Card Di Kota Batam. Journal Information System Development (ISD), 4(2).

Downloads

Published

2022-09-15

How to Cite

Hendriyanto, M. D. ., & Sari, B. N. (2022). PENERAPAN ALGORITMA K-NEAREST NEIGHBOR DALAM KLASIFIKASI JUDUL BERITA HOAX. JURNAL ILMIAH INFORMATIKA, 10(02), 80–84. https://doi.org/10.33884/jif.v10i02.5477