KLASIFIKASI TEKNIK BULUTANGKIS BERDASARKAN POSE DENGAN CONVOLUTIONAL NEURAL NETWORK

Authors

  • Aditya Bobby Rizki Universitas Stikubank
  • Eri Zuliarso Universitas Stikubank

DOI:

https://doi.org/10.33884/jif.v10i02.5559

Keywords:

Klasifikasi, Bulu Tangkis, Pose Estimation, Convolutional Neural Network

Abstract

Convolutional Neural Network (CNN) is a deep learning algorithm which is the development of Multilayer Perception (MLP) which is designed to process data in two-dimensional form. At the stage of making the system there are several stages including sample data, data sources and data analysis methods. The dataset that is processed is the Badminton Technique, namely the Forehand Technique which consists of 374 images, the Service Technique consisting of 369 images and the smash technique consisting of 420 images with outliers of 146 images. After the data is cleaned of outliers, bootrapping is carried out again to unite all data from each separate class into one again. The results of this study say that the Classification of Badminton Techniques Based on Pose with Convolutional Neural Networks, it can be concluded that the process of testing pose classification with test data using several methods such as logistic regression, random forest, and KNN produces significant accuracy. values ranging from 80% to 90%.

References

B. S. Pane, “Peranan Olahraga Dalam Meningkatkan Kesehatan,” J. Pengabdi. Kpd. Masy., vol. 21, no. 79, pp. 1–4, 2015, [Online]. Available: https://jurnal.unimed.ac.id/2012/index.php/jpkm/article/view/4646.

I. Intan Primayanti, “Pengaruh Latihan Drill Dan Latihan Pola Pukulan Terhadap Kemampuan Smash Bulutangkis Pada Pb Liansa Juniormasbagik,” Progr. Stud. Pendidik. Olahraga dan Kesehatan, Fak. Pendidik. Olahraga danKesehatan, InstitutKeguruan dan Ilmu Pendidik. IKIP Mataram, vol. 6, pp. 25–31, 2019.

D. Utami, “Peran Fisiologi Dalam Meningkatkan Prestasi Olahraga Indonesia Menuju Sea Games Danarstuti,” J. Olahraga Prestasi, vol. 11, pp. 52–63, 2015.

P. A. Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia,” Algor, vol. 2, no. 1, pp. 12–21, 2020.

Felix, S. Faisal, T. F. M. Butarbutar, and P. Sirait, “Implementasi CNN dan SVM untuk Identifikasi Penyakit Tomat via Daun,” Issn 2622-8130, vol. 20, no. 2, pp. 117–134, 2019.

V. M. P. Salawazo, D. P. J. Gea, R. F. Gea, and F. Azmi, “Implementasi Metode Convolutional Neural Network ( CNN ) Pada Peneganalan Objek Video CCTV,” J. Mantik Penusa, vol. 3, no. 1, pp. 74–79, 2019.

V. Sutojo, T; Mulyanto, Edi; Suhartono, “Kecerdasan Buatan,” pp. 211–235, 2011.

A. Ahmad Hania, “Mengenal Artificial Intelligence, Machine Learning, dan Deep Learning,” J. Teknol. Indones., no. June, 2017, [Online]. Available: https://amt-it.com/mengenal-perbedaan-artificial-inteligence-machine-learning-deep-learning/.

S. F. Handono, F. T. Anggraeny, and B. Rahmat, “Implementasi Convolutional Neural Network (Cnn) Untuk Deteksi Retinopati Diabetik,” J. Inform. dan Sist. Inf., vol. 1, no. 2, pp. 669–678, 2020.

N. Cristin, N. Batubara, C. Setianingsih, and M. Kallista, “Deteksi Tanda Kehidupan Pada Korban Bencana Alam Dengan Algoritma Faster R-Cnn Dan Open Pose (Life Sign Detector Using Faster Region Convolutional Neural Network (Faster R-Cnn) and Open Pose),” vol. 8, no. 5, pp. 6151–6161, 2021.

T. L. Munea, Y. Z. Jembre, H. T. Weldegebriel, L. Chen, C. Huang, and C. Yang, “The Progress of Human Pose Estimation: A Survey and Taxonomy of Models Applied in 2D Human Pose Estimation,” IEEE Access, vol. 8, pp. 133330–133348, 2020, doi: 10.1109/ACCESS.2020.3010248.

R. Hendayana, “Application Method of Logistic Regression Analyze the Agricultural Technology Adoption,” Inform. Pertan., vol. 22, no. 1, pp. 1–9, 2013, [Online]. Available: http://ejurnal.litbang.pertanian.go.id/index.php/IP/article/view/2271/1970.

Simanjuntak, P., Pangaribuan, H., & Syastra, M. T. (2021). Data Mining Rekomendasi Pemakaian Skincare. MEANS (Media Informasi Analisa dan Sistem), 6(1), 80-83.

F. Y. Pamuji and V. P. Ramadhan, “Komparasi Algoritma Random Forest dan Decision Tree untuk Memprediksi Keberhasilan Immunotheraphy,” J. Teknol. dan Manaj. Inform., vol. 7, no. 1, pp. 46–50, 2021, doi: 10.26905/jtmi.v7i1.5982.

A. Johar, D. Yanosma, and K. Anggriani, “Implementasi Metode K-Nearest Neighbor (Knn) Dan Simple Additive Weighting (Saw) Dalam Pengambilan Keputusan Seleksi Penerimaan Anggota Paskibraka,” Pseudocode, vol. 3, no. 2, pp. 98–112, 2017, doi: 10.33369/pseudocode.3.2.98-112.

Downloads

Published

2022-09-15

How to Cite

Rizki, A. B., & Zuliarso, E. . (2022). KLASIFIKASI TEKNIK BULUTANGKIS BERDASARKAN POSE DENGAN CONVOLUTIONAL NEURAL NETWORK. JURNAL ILMIAH INFORMATIKA, 10(02), 96–101. https://doi.org/10.33884/jif.v10i02.5559