ANALISIS SENTIMEN ULASAN APLIKASI POSPAY DENGAN ALGORITMA SUPPORT VECTOR MACHINE
DOI:
https://doi.org/10.33884/jif.v11i01.6611Keywords:
Sentiment Analysis, Pospay, Text Mining, Support Vector MachineAbstract
Pospay application is a form of financial technology belonging to Pos Indonesia. Pospay application on the Google Play Store has more than 25 thousand user reviews. The more user reviews, the more difficult and longer it will take for prospective users and application managers to conclude information on user sentiment trends that are useful in making decisions about application use and evaluation. Sentiment analysis is the solution to this problem because sentiment analysis is able to classify unstructured data to generate sentiment information efficiently by applying data mining algorithms. This research uses the Knowledge Discovery in Database (KDD) method, where at the data mining stage, the Support Vector Machine algorithm is applied in making the model. Grid search was applied to test 3 scenarios so that the proportion of data distribution with the best accuracy was obtained, namely, 90:10, using RBF kernel with parameters: c = 1, ℽ = 1. The results of this research were a model with 95% accuracy, 91% precision, 100% recall, and 95% f1-score. Information was also obtained that the sentiment of Pospay application users on the Google Play Store tends to be positive (54.1%) but not much far from the percentage of negative sentiments (45.9%).
References
I. Martinelli, “Menilik Financial Technology dalam Bidang Perbankan,” J. Sos. Hum. Komun., vol. 2, no. 1, pp. 32–43, 2021.
Google Play Store, “Google Play Store : Pospay.” https://play.google.com/store/apps/details?id=com.posindonesia.giropos&hl=id&gl=US (accessed Dec. 20, 2022).
A. Nabillah, S. Alam, and M. G. Resmi, “Twitter User Sentiment Analysis Of TIX ID Applications Using Support Vector Machine Algorithm,” vol. 3, no. 1, pp. 14–27, 2022.
O. Irnawati and K. Solecha, “Analisis Sentimen Ulasan Aplikasi Flip Menggunakan Naïve Bayes dengan Seleksi Fitur PSO,” vol. 4, no. 02, pp. 189–199, 2022.
G. Sanjaya and K. M. Lhaksmana, “Analisis Sentimen Komentar YouTube tentang Terpilihnya Menteri Kabinet Indonesia Maju Menggunakan Lexicon Based,” vol. 7, no. 3, pp. 9698–9710, 2020.
R. A. Saputra, D. Puspitasari, and T. Baidawi, “Deteksi Kematangan Buah Melon dengan Algoritma Support Vector Machine Berbasis Ekstraksi Fitur GLCM,” vol. 4, no. 2, 2022.
R. Wahyudi and G. Kusumawardhana, “Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” J. Inform., vol. 8, no. 2, pp. 200–207, 2021, doi: 10.31294/ji.v8i2.9681.
D. A. C. Rachman, R. Goejantoro, and F. D. T. Amijaya, “Implementasi Text Mining Pengelompokkan Dokumen Skripsi Menggunakan Metode K-Means Clustering,” J. Eksponensial, vol. 11, no. 2, pp. 167–174, 2020.
W. Widayat, “Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning,” J. Media Inform. Budidarma, vol. 5, no. 3, p. 1018, 2021, doi: 10.30865/mib.v5i3.3111.
F. Romadoni, Y. Umaidah, and B. N. Sari, “Text Mining Untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 2, pp. 247–253, 2020, doi: 10.32736/sisfokom.v9i2.903.
D. Suprayogi and H. F. Pardede, “Support Vector Regression Dalam Prediksi Penurunan Jumlah Kasus Penderita Covid-19,” Jointecs (Journal Inf. Technol. Comput. Sci., vol. 7, no. 2, pp. 63–70, 2022, doi: 10.31328/jointecs.v7i2.3687.
M. I. Gunawan, D. Sugiarto, and I. Mardianto, “Peningkatan Kinerja Akurasi Prediksi Penyakit Diabetes Mellitus Menggunakan Metode Grid Seacrh pada Algoritma Logistic Regression,” J. Edukasi dan Penelit. Inform., vol. 6, no. 3, p. 280, 2020, doi: 10.26418/jp.v6i3.40718.
Yurisya Maisyiroh, “Pengaruh Pelaksanaan WFH terhadap Burnout Karyawan dengan Work Family Conflict sebagai Variabel Intervening,” J. Ris. Manaj. dan Bisnis, vol. 2, no. 1, pp. 47–54, 2022, doi: 10.29313/jrmb.v2i1.934.
I. Islamy, “Penelitian Survei dalam Pembelajaran dan Pengajaran Bahasa Inggris,” Japanese Soc. Biofeedback Res., vol. 19, no. 5, pp. 463–466, 2019.
L. Maharani Siniwi, A. Prahutama, and A. Rachman Hakim, “Query Expansion Ranking Pada Analisis Sentimen Menggunakan Klasifikasi Multinomial Naïve Bayes (Studi Kasus : Ulasan Aplikasi Shopee pada Hari Belanja Online Nasional 2020),” J. Gaussian, vol. 10, no. 3, pp. 377–387, 2021.
Irhamah, N. A. Rakhmawati, and H. Nurhadi, “Pengembangan Sistem Informasi Sederhana untuk Pengelolaan dan Pengolahan Data Tol Laut PT. PELNI (Persero) Cabang Surabaya,” Sewagati, vol. 4, no. 2, p. 95, 2020, doi: 10.12962/j26139960.v4i2.6163.
N. M. Maghfur, F. Muhammad, and A. Voutama, “Analysis of the Relationship between Public Sentiment on Social Media and Indonesian Covid-19 Dynamics,” Systematics, vol. 3, no. 3, pp. 336–345, 2021.
A. Rahman Isnain, A. Indra Sakti, D. Alita, and N. Satya Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” Jdmsi, vol. 2, no. 1, pp. 31–37, 2021, [Online]. Available: https://t.co/NfhnfMjtXw.
K. I. Ruslim, P. P. Adikara, and Indriati, “Analisis Sentimen Pada Ulasan Aplikasi Mobile Banking Menggunakan Metode Support Vector Machine dan Lexicon Based Features,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 7, pp. 6694–6702, 2019.
N. Hasanati, Q. Aini, and A. Nuri, “Implementation of Support Vector Machine with Lexicon Based for Sentiment Analysis on Twitter,” in 2022 10th International Conference on Cyber and IT Service Management (CITSM), Sep. 2022, pp. 1–4, doi: 10.1109/CITSM56380.2022.9935887.
Prastoto, G. Y. (2019). SISTEM PENDUKUNG KEPUTUSAN PEMBELIAN ALAT OUTDOOR METODE TOPSIS: Sistem Pendukung Keputusan Pembelian Alat Outdoor Metode Topsis. JURNAL ILMIAH INFORMATIKA, 7(02), 127–131. https://doi.org/10.33884/jif.v7i02.1278
Amelia, S. (2019). RANCANG BANGUN SISTEM PENILAIAN ARTIKEL MENGGUNAKAN METODE WEIGHTED PRODUCT (WP) PT POS INDONESIA (PERSERO). JURNAL ILMIAH INFORMATIKA, 7(02), 67–75. https://doi.org/10.33884/jif.v7i02.1311
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 JURNAL ILMIAH INFORMATIKA
This work is licensed under a Creative Commons Attribution 4.0 International License.