PERBANDINGAN ALGORITMA NAÏVE BAYES CLASSIFIER DAN K-NEAREST NEIGHBORS UNTUK ANALISIS SENTIMEN COVID-19 DI TWITTER

Authors

  • Habibi Aulia Nur Syifa Habibi Universitas Nusantara PGRI Kediri
  • Arie Nugroho Universitas Nusantara PGRI Kediri
  • Rina Firliana Universitas Nusantara PGRI Kediri

DOI:

https://doi.org/10.33884/jif.v11i01.7069

Keywords:

Covid-19, Twitter, Sentiment Analysis, Naive Bayes Classifier, K-Nearest Neighbors

Abstract

COVID-19 emerged in China in 2019. In Indonesia in 2020 there were more than 3000 positive cases of COVID-19 with a mortality rate of 9.1%. The government's incomplete efforts to break the chain of the spread of COVID-19 have made people uneasy about this pandemic. Many people want to express their aspirations on social media which is considered suitable as a place that represents the aspirations of the COVID-19 pandemic. One of them is twitter. There are so many text messages sent, some positive and some negative, that it is difficult to retrieve harmonized information due to the diversity of text messages sent. One way to overcome this is with sentiment analysis. This research has processes including text preprocessing, word weighting, classification with K-Nearest Neighbors (KNN) and Naïve Bayes Classifiers (NBC) algorithms. The results obtained by KNN got an accuracy of 72.37% while NBC amounted to 67.84%. KNN is the best classification algorithm for negative sentiment classification, the negative label predicted correctly in KNN is greater, namely 393 compared to NBC which is 339. while NBC is the best algorithm for positive sentiment classification, the positive label predicted correctly NBC is 275 greater than KNN as much as 262.

References

S. Kemp, “DIGITAL 2021: INDONESIA,” DATA REPORTAL, 2021. https://datareportal.com/reports/digital-2021-indonesia (accessed Dec. 27, 2021).

M. I. Fikri, T. S. Sabrila, Y. Azhar, and U. M. Malang, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA JURNAL, vol. 10, no. 02, pp. 71–76, 2020.

M. A. Shereen, S. Khan, A. Kazmi, N. Bashir, and R. Siddique, “COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses,” Journal of Advanced Research, vol. 24. Elsevier B.V., pp. 91–98, Jul. 01, 2020. doi: 10.1016/j.jare.2020.03.005.

M. P. Lestari, D. J. Witarsyah, and F. Hamami, “PERAMALAN PERTAMBAHAN PASIEN COVID-19 MENGGUNAKAN SUPPORT VECTOR REGRESSION FORECASTING GROWTH OF COVID-19 PATIENTS USING SUPPORT VECTOR REGRESSION.”

E. Kartika Sari, B. Ria EMD, M. Karina Putri, M. Eka Rosita, P. S. Studi, and S. Tinggi Ilmu Kesehatan Akbidyo, “PANGAN FUNGSIONAL SEBAGAI ALTERNATIF PENUNJANG IMUN DI MASA PANDEMI,” 2021.

I. Mahfud and A. Gumantan, “Survey Of Student Anxiety Levels During The Covid-19 Pandemic,” Jp.jok (Jurnal Pendidikan Jasmani, Olahraga dan Kesehatan), vol. 4, no. 1, pp. 86–97, Nov. 2020, doi: 10.33503/jp.jok.v4i1.1103.

E. T. Handayani and A. Sulistiyawati, “ANALISIS SENTIMEN RESPON MASYARAKAT TERHADAP KABAR HARIAN COVID-19 PADA TWITTER KEMENTERIAN KESEHATAN DENGAN METODE KLASIFIKASI NAIVE BAYES,” Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 2, no. 3, pp. 32–37, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

R. Dwi Septiana, A. Budi Susanto, and T. Tukiyat, “Analisis Sentimen Vaksinasi Covid-19 Pada Twitter Menggunakan Naive Bayes Classifier Dengan Feature Selection Chi-Squared Statistic Dan Particle Swarm Optimization,” pp. 49–56, 2021.

N. M. A. J. Astari, Dewa Gede Hendra Divayana, and Gede Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” Jurnal Sistem dan Informatika (JSI), vol. 15, no. 1, pp. 27–29, Nov. 2020, doi: 10.30864/jsi.v15i1.332.

P. H. Prastyo, A. S. Sumi, A. W. Dian, and A. E. Permanasari, “Tweets Responding to the Indonesian Government’s Handling of COVID-19: Sentiment Analysis Using SVM with Normalized Poly Kernel,” Journal of Information Systems Engineering and Business Intelligence, vol. 6, no. 2, p. 112, Oct. 2020, doi: 10.20473/jisebi.6.2.112-122.

M. A. Rofiqi, Abd. C. Fauzan, A. P. Agustin, and A. A. Saputra, “Implementasi Term-Frequency Inverse Document Frequency (TF-IDF) Untuk Mencari Relevansi Dokumen Berdasarkan Query,” ILKOMNIKA: Journal of Computer Science and Applied Informatics, vol. 1, no. 2, pp. 58–64, Dec. 2019, doi: 10.28926/ilkomnika.v1i2.18.

T. N. Wijaya, R. Indriati, and M. N. Muzaki, “Analisis Sentimen Opini Publik Tentang Undang-Undang Cipta Kerja Pada Twitter,” Jambura Journal of Electrical and Electronics Engineering, vol. 2, no. 2, pp. 78–83, 2021.

S. E. Saad and J. Yang, “Twitter Sentiment Analysis Based on Ordinal Regression,” IEEE Access, vol. 7, pp. 163677–163685, 2019, doi: 10.1109/ACCESS.2019.2952127.

R. Kurniawan and A. Apriliani, “Analisis sentimen masyarakat terhadap virus corona berdasarkan opini dari Twitter berbasis web scraper,” Jurnal Instek (Informatika Sains dan Teknologi), vol. 5, no. 1, pp. 67–75, 2020.

E. Kartika and J. Gondohanindijo, “Rancang Bangun Model Sentimen Analisis Review Produk Pada Toko Online Menggunakan Naive Bayes,” Seminar Nasional Hasil Penelitian dan Pengabdian Kepada Masyarakat, pp. 201–212, 2020.

E. Ramadhanta, M. Razaq, D. W. Jacob, and F. Hamami, “Analisis Sentimen Kepuasan Mahasiswa Terhadap Pembelajaran Online Selama Pandemi Covid-19 Pada Media Sosial Twitter Menggunakan Perbandingan Algoritma Klasifikasi,” e-Proceeding of Engineering, vol. 8, no. 5, pp. 9000–9006, 2021.

J. A. Septian, T. M. Fahrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” 2019. [Online]. Available: https://t.co/9WloaWpfD5

Rafiqa Cahyani, “ANALISIS SENTIMEN PADA MEDIA SOSIAL TWITTER TERHADAP TOKOH PUBLIK PESERTA PILPRES 2019,” SKRIPSI, UIN SUNAN AMPEL SURABAYA, Surabaya, 2019.

N. Krisandi, B. Helmi, and I. Prihandono, “ALGORITMA k-NEAREST NEIGHBOR DALAM KLASIFIKASI DATA HASIL PRODUKSI KELAPA SAWIT PADA PT. MINAMAS KECAMATAN PARINDU,” vol. 02, no. 1, p. 50, 2013.

P. Pitria, “Analisis sentimen pengguna twitter pada akun resmi samsung indonesia dengan menggunakan naïve bayes ,” Doctoral dissertation, 2014.

A. Kurniawan and S. Adinugroho, “Analisis Sentimen Opini Film Menggunakan Metode Naïve Bayes dan Lexicon Based Features,” 2019. [Online]. Available: http://j-ptiik.ub.ac.id

Z. Muhammad, R. Ramadhani, and H. Rizqifaluthi, “Process Mining Akademik Sekolah Menggunakan RapidMiner,” MATICS, vol. 10, no. 2, p. 39, Mar. 2018, doi: 10.18860/mat.v10i2.5745.

Ph. D. Zainal A. Hasibuan, METODOLOGI PENELITIAN PADA BIDANG ILMU KOMPUTER DAN TEKNOLOGI INFORMASI. 2007.

Prof. Dr. Sugiyono, METODE PENELITIAN KUANTITATIF, KUALITATIF DAN R & D. ALFABETA, 2013.

F. Z. Tala, “A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia,” 2003.

Kemdikbud, “KBBI Daring,” Oct. 28, 2016. https://kbbi.kemdikbud.go.id/ (accessed Dec. 11, 2022).

M. Rivki and A. M. Bachtiar, “IMPLEMENTASI ALGORITMA K-NEAREST NEIGHBOR DALAM PENGKLASIFIKASIAN FOLLOWER TWITTER YANG MENGGUNAKAN BAHASA INDONESIA,” Jurnal Sistem Informasi, vol. 13, no. 1, p. 31, May 2017, doi: 10.21609/jsi.v13i1.500.

A. A. Nabhan, B. Rahayudi, and D. E. Ratnawati, “Klasifikasi Tweets Masyarakat yang Membicarakan Layanan GoFood dan GoRide pada GoJek Dimedia Sosial Twitter Selama Masa Kenormalan Baru (New Normal) dengan Metode Naïve Bayes,” 2021. [Online]. Available: http://j-ptiik.ub.ac.id

SIMANJUNTAK, Pastima et al. DATA MINING UNTUK KLASIFIKASI STATUS PANDEMI COVID 19. Jurnal Tekinkom (Teknik Informasi dan Komputer), [S.l.], v. 5, n. 2, p. 327-332, dec. 2022. ISSN 2621-3079.

Yasid, M. (2019). ANALISIS SENTIMEN MASKAPAI CITILINK PADA TWITTER DENGAN METODE NAÏVE BAYES. JURNAL ILMIAH INFORMATIKA, 7(02), 82–86. https://doi.org/10.33884/jif.v7i02.1329

Published

2023-03-10

How to Cite

Habibi, H. A. N. S., Nugroho, A., & Firliana, R. (2023). PERBANDINGAN ALGORITMA NAÏVE BAYES CLASSIFIER DAN K-NEAREST NEIGHBORS UNTUK ANALISIS SENTIMEN COVID-19 DI TWITTER. JURNAL ILMIAH INFORMATIKA, 11(01), 54–62. https://doi.org/10.33884/jif.v11i01.7069