ANALISIS SENTIMEN PERBANDINGAN LAYANAN JASA PENGIRIMAN KURIR PADA ULASAN PLAY STORE MENGGUNAKAN METODE DECISION TREE DAN RANDOM FOREST

Authors

  • Dellavianti Nishfi Ilmiah Huda Universitas Logistik dan Bisnis Internasional
  • Cahyo Prianto Universitas Logistik dan Bisnis Internasional
  • Rolly Maulana Awangga Universitas Logistik dan Bisnis Internasional

DOI:

https://doi.org/10.33884/jif.v11i02.7952

Keywords:

Courier Delivery, Sentiment Analysis, Performance, Decision Tree, Random Forest

Abstract

Courier delivery is a crucial aspect of the e-commerce industry, and customer satisfaction with delivery services can significantly impact a company’s reputation, whether positive or negative. Therefore, sentiment analysis of customer reviews on the Play Store platform can provide valuable insights into the performance and acceptance of various courier delivery services available. This Study aims to conduct sentiment analysis on reviews of courier delivery services using two classification methods: Random Forest and Decision Tree. The first step in this research is data pre-processing, which includes text cleaning, tokenization, and the removal of irrelevant words. Subsequently, relevant features are extracted from the review texts using suitable feature extraction methods. Both Random Forest and Decision Tree methods are implemented to classify reviews from three companies: Pt X, Pt Y, and Pt Z, into two sentiment categories: positive and negative.The performance of both methods is evaluated using standard evaluation metrics. Furthermore, it is expected that this research will provide valuable information to the three e-commerce companies and courier service providers in improving the quality of their services based on customer feedback. Additionally, it can serve as a reference for consumers in choosing a courier delivery company that suits their needs.

References

F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, p. 50, 2018, doi: 10.35314/isi.v3i1.335.

N. Ika, P. Kalingara, O. N. Pratiwi, and H. D. Anggana, “ANALISIS SENTIMEN REVIEW CUSTOMER TERHADAP LAYANAN EKSPEDISI JNE DAN J&T EXPRESS MENGGUNAKAN METODE NAÏVE BAYES SENTIMENT ANALYSIS REVIEW CUSTOMER OF JNE AND J&T EXPRESS EXPEDITION SERVICES USING NAÏVE BAYES METHOD,” vol. 8, no. 5, 2021.

L. M. Cendani and A. Wibowo, “Perbandingan Metode Ensemble Learning pada Klasifikasi Penyakit Diabetes,” J. Masy. Inform., vol. 13, no. 1, pp. 33–44, 2022, doi: 10.14710/jmasif.13.1.42912.

F. N. Zuhri, A. Alamsyah, and S. Si, “Analisis Sentimen Masyarakat Terhadap Brand Smartfren Menggunakan Naive Bayes Classifier Di Forum Kaskus Public Sentiment Analysis of Smartfren Brand Using Naive Bayes Classifier on Kaskus Forum,” e-Proceeding Manag., vol. 4, no. 1, pp. 242–251, 2017.

A. Andreyestha and A. Subekti, “Analisa Sentiment Pada Ulasan Film Dengan Optimasi Ensemble Learning,” J. Inform., vol. 7, no. 1, pp. 15–23, 2020, doi: 10.31311/ji.v7i1.6171.

A. E. Khedr, S. E. Salama, and N. Yaseen, “Predicting stock market behavior using data mining technique and news sentiment analysis,” Int. J. Intell. Syst. Appl., vol. 9, no. 7, pp. 22–30, 2017, doi: 10.5815/ijisa.2017.07.03.

R. Ridjalaludin, I. A. Ratnamulyani, and A. A. Kusumadinata, “Pengaruh Penggunaan Layanan Aplikasi Digital Google Play Dalam Smartphone Terhadap Pemenuhan Kebutuhan Informasi Mahasiwa,” J. Komun., vol. 2, no. 2, pp. 135–146, 2017, doi: 10.30997/jk.v2i2.229.

Y. Sunoto and B. Wasito, “Analisis Testimonial Wisatawan Menggunakan Text Mining Dengan Metode Naive Bayes Dan Decision Tree , Studi Kasus Pada Hotel – Hotel Di Jakarta,” J. Inform. dan Bisnis Anal., vol. 3, no. 2, pp. 39–49, 2014.

G. H. Wastito, “Bab II Landasan Teori,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2018.

S. Juniarsih, E. F. Ripanti, and E. E. Pratama, “Implementasi Naive Bayes Classifier pada Opinion Mining Berdasarkan Tweets Masyarakat Terkait Kinerja Presiden dalam Aspek Ekonomi,” J. Sist. dan Teknol. Inf., vol. 8, no. 3, p. 239, 2020, doi: 10.26418/justin.v8i3.39118.

V. A. Flores, P. A. Permatasari, and L. Jasa, “Penerapan Web Scraping Sebagai Media Pencarian dan Menyimpan Artikel Ilmiah Secara Otomatis Berdasarkan Keyword,” Maj. Ilm. Teknol. Elektro, vol. 19, no. 2, p. 157, 2020, doi: 10.24843/mite.2020.v19i02.p06.

“ANALISIS SENTIMEN ULASAN EKSPEDISI J&T EXPRESS MENGGUNAKAN ALGORITMA NAÏVE BAYES.htm”.

A. Wicaksana and T. Rachman, “済無No Title No Title No Title,” Angew. Chemie Int. Ed. 6(11), 951–952., vol. 3, no. 1, pp. 10–27, 2018, [Online]. Available: https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf

P. B. N. Setio, D. R. S. Saputro, and Bowo Winarno, “Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4.5,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 64–71, 2020.

Hasugian and Shidiq, “Language Record Structure,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.

D. Safryda Putri and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi Pospay Dengan Algoritma Support Vector Machine,” J. Ilm. Inform., vol. 11, no. 01, pp. 32–40, 2023, doi: 10.33884/jif.v11i01.6611.

M. F. Rahman, D. Alamsah, M. I. Darmawidjadja, and I. Nurma, “Klasifikasi Untuk Diagnosa Diabetes Menggunakan Metode Bayesian Regularization Neural Network (RBNN),” J. Inform., vol. 11, no. 1, p. 36, 2017, doi: 10.26555/jifo.v11i1.a5452.

Z. Dong, “Bab 2 Tinjauan Pustaka Pengetahuan,” Экономика Региона, no. Kolisch 1996, pp. 49–56, 2012.

Musthofa Galih Pradana, “Penggunaan Fitur Wordcloud dan Document Term Matrix dalam Text Mining,” J. Ilm. Inform., vol. 8, no. 1, pp. 38–43, 2020.

F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” … Teknol. Inf. dan …, vol. 6, no. 9, pp. 4305–4313, 2022, [Online]. Available: http://j-ptiik.ub.ac.id

M. Aufar, R. Andreswari, and D. Pramesti, “Sentiment Analysis on Youtube Social Media Using Decision Tree and Random Forest Algorithm: A Case Study,” 2020 Int. Conf. Data Sci. Its Appl. ICoDSA 2020, 2020, doi: 10.1109/ICoDSA50139.2020.9213078.

M. RIDWAN, N. R. Dewi, and Y. Resti, “Perbandingan Algoritma Decision Tree C4. 5 Dan Random Forest Pada Prediksi Rating Aplikasi Appstore,” 2023.

I. K. Susanto, “Analisis Sentimen dan Topic Modelling Pada Pembelajaran Online di Indonesia Melalui Twitter,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 6, no. 2, p. 85, 2021, doi: 10.31328/jointecs.v6i2.2350.

Downloads

Published

2023-09-05

How to Cite

Huda, D. N. I., Prianto, C., & Awangga, R. M. (2023). ANALISIS SENTIMEN PERBANDINGAN LAYANAN JASA PENGIRIMAN KURIR PADA ULASAN PLAY STORE MENGGUNAKAN METODE DECISION TREE DAN RANDOM FOREST. JURNAL ILMIAH INFORMATIKA, 11(02), 150–158. https://doi.org/10.33884/jif.v11i02.7952