ANALISIS SENTIMEN UNTUK MEMPREDIKSI HASIL CALON PEMILU PRESIDEN MENGGUNAKAN LEXICON BASED DAN RANDOM FOREST
DOI:
https://doi.org/10.33884/jif.v11i02.7987Keywords:
Sentiment Analysis, Election, Lexicon Based, Random Forest, Text MiningAbstract
The Presidential Election is one of the crucial moments in Indonesian politics. To predict the election results, sentiment analysis methods can be used to evaluate public opinions through social media. One of the popular social media platforms nowadays is Twitter. As the Republic of Indonesia's Presidential Election approaches, there is an increasing number of tweets discussing the event. This situation creates a favorable opportunity to conduct sentiment analysis on the election campaign topic. There are various opinions from Twitter users with positive, neutral, and negative sentiments. The collected tweet data undergoes preprocessing, involving two main processes: cleaning and stemming. Therefore, sentiment analysis is necessary to understand the public's tendencies towards the election. The objective of this research is to obtain sentiment analysis of the text documents to determine positive or negative sentiments. Two methods, namely Random Forest and Lexion Based, are used to predict the presidential candidates' sentiments. Random Forest is employed to analyze sentiments in text data collected from various sources, including social media, news websites, and online forums. This method involves an ensemble of decision trees working collectively to classify sentiments as positive, negative, or neutral towards the Presidential Election candidates. On the other hand, Lexion Based is used to associate words in the text with specific sentiments.
References
U. Rauta, “Menggagas Pemilihan Presiden yang Demokratis dan Aspiratif,” J. Konstitusi, vol. 11, no. 3, p. 600, 2016, doi: 10.31078/jk11310.
F. F. Sultan and Silviana Purwanti, “Pembentukan Opini Publik Pada Akun Twitter Pribadi Novel Baswedan,” eJournal lmu Komunikasi, 2022, 10 155-164 ISNN 2502-597X ISNN 2502-5961 ejournal.ip.fisip-unmul.org © Copyr. 2022, vol. 10, no. 4, pp. 155–164, 2022.
R. Vindua and A. U. Zailani, “Analisis Sentimen Pemilu Indonesia Tahun 2024 Dari Media Sosial Twitter Menggunakan Python,” JURIKOM (Jurnal Ris. Komputer), vol. 10, no. 2, p. 479, Apr. 2023, doi: 10.30865/jurikom.v10i2.5945.
C. Juditha, “Political Marketing dan Media Sosial,” J. Stud. Komun. dan Media, vol. 19, no. 2, pp. 225–242, 2015.
P. A. Permatasari, L. Linawati, and L. Jasa, “Survei Tentang Analisis Sentimen Pada Media Sosial,” Maj. Ilm. Teknol. Elektro, vol. 20, no. 2, p. 177, 2021, doi: 10.24843/mite.2021.v20i02.p01.
B. Bayu Baskoro et al., “Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus: Ulasan Pelanggan Pada Situs TRIPADVISOR),” Inista, vol. 3, no. 2, pp. 021–029, 2021, doi: 10.20895/INISTA.V3.
F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” … Teknol. Inf. dan …, vol. 6, no. 9, pp. 4305–4313, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
C. P. Yanti, N. W. E. Agustini, and ..., “Perbandingan Metode K-NN Dan Metode Random Forest Untuk Analisis Sentimen pada Tweet Isu Minyak Goreng di Indonesia,” J. Media …, vol. 7, no. April, pp. 756–765, 2023, doi: 10.30865/mib.v7i2.5900.
A. B. Azed, “Sistem Pemilihan Umum di Indonesia,” J. Huk. dan Pembang., vol. 17, no. 2, pp. 170–180, 1987.
A. E. Subiyanto, “Pemilihan Umum Serentak yang Berintegritas sebagai Pembaruan Demokrasi Indonesia,” J. Konstitusi, vol. 17, no. 2, p. 355, 2020, doi: 10.31078/jk1726.
A. Firdaus and W. I. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan),” J. JUPITER, vol. 13, no. 1, p. 66, 2021.
F. Nurhuda, S. W. Sihwi, and A. Doewes, “Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier,” vol. 2, no. 2, 2013.
L. Ardiani, H. Sujaini, and T. Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak,” J. Sist. dan Teknol. Inf., vol. 8, no. 2, p. 183, 2020, doi: 10.26418/justin.v8i2.36776.
M. H. Chyntia, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen berbasis Aspek terhadap Ulasan Hotel Tentrem Yogyakarta menggunakan Algoritma Random Forest Classifier,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 4, pp. 1702–1708, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
L. I. Ambronsius and A. Rahman, “Menganalisis Pengaruh Platform Twitter Sebagai Alat Komunikasi Kpopers dalam Berspesialisasi Penyebaran Informasi Analyzing the Influence of the Twitter Platform as a Kpopers Communication Tool in Specializing in Information Dissemination,” Pinisi J. Art, Humanit. Soc. Stud., vol. 2, no. 6, pp. 234–240, 2022.
M. Hidayatullah et al., “Sentiment Analysis of Police Performance On Twitter Users Using Naïve Bayes Method,” RISTEC Res. Inf. Syst. Technol., vol. 2, no. 2, pp. 113–125, 2021, doi: 10.31980/ristec.v2i2.1945.
R. M. Awangga and N. H. Khonsa’, “Analisis Performa Algoritma Random Forest dan Naive Bayes Multinomial pada Dataset Ulasan Obat dan Ulasan Film,” InComTech J. Telekomun. dan Komput., vol. 12, no. 1, p. 60, 2022, doi: 10.22441/incomtech.v12i1.14770.
D. Winarso, Yanda Noor Yudha, and Syahril, “Analisis Sentimen Masyarakat Pada Twiter Terhadap Isu Covid-19 Menggunakan Metode Lexicon Based,” J. Fasilkom, vol. 11, no. 2, pp. 97–103, 2021, doi: 10.37859/jf.v11i2.2772.
P. A. Sumitro, Rasiban, D. I. Mulyana, and W. Saputro, “Analisis Sentimen Terhadap Vaksin Covid-19 di Indonesia pada Twitter Menggunakan Metode Lexicon Based,” J-ICOM - J. Inform. dan Teknol. Komput., vol. 2, no. 2, pp. 50–56, 2021, doi: 10.33059/j-icom.v2i2.4009.
E. V. Tjahjadi and B. Santoso, “Klasifikasi Malware Menggunakan Teknik Machine Learning,” J. Ilm. Ilmu Komput., vol. 2, no. 1, pp. 60–70, 2023.
N. Sari, P. Juana, E. Haerani, F. Syafria, and E. Budianita, “Analisis Sentimen Tanggapan Masyarakat Terhadap Calon Presiden 2024 Ridwan Kamil Menggunakan Metode Naive Bayes Classifier,” vol. 4, pp. 570–576, 2024, doi: 10.30865/json.v4i4.6168.
B. Hakim, “Analisa Sentimen Data Text Preprocessing Pada Data Mining Dengan Menggunakan Machine Learning,” JBASE - J. Bus. Audit Inf. Syst., vol. 4, no. 2, pp. 16–22, 2021, doi: 10.30813/jbase.v4i2.3000.
A. Nurlayli and M. A. Nasichuddin, “Topik Modeling Penelitian Dosen Jptei Uny Pada Google Scholar Menggunakan Latent Dirichlet Allocation,” Elinvo (Electronics, Informatics, Vocat. Educ., vol. 4, no. 2, pp. 154–161, 2019, doi: 10.21831/elinvo.v4i2.28254.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 JURNAL ILMIAH INFORMATIKA
This work is licensed under a Creative Commons Attribution 4.0 International License.