Data Mining Pada Jumlah Penumpang Menggunakan Metode Clustering

Authors

  • Koko Handoko Universitas Putera Batam
  • Lido Sabda Lesmana Universitas Putera Batam

Keywords:

Clustering; Data mining; RapidMiner; Total passenger.

Abstract

Currently, the concept of Data Mining is increasingly recognized as an important tool in information management because of the increasing amount of information. This study aims to classify the number of passengers at the airport Hang Nadim Batam. A very large sum of these huge amounts of data wants data for the new knowledge of the data. Data drilling is a process that uses statistical, mathematical, artificial intelligence, and machine learning techniques to extract and identify relevant information and large databases. One technique known in data mining is grouping, which is the process of grouping a number of data or objects into a cluster (group). Each of these clusters will contain data that is as similar as possible and different from the objects in the other clusters. In this case we can select the price data as the initial cluster center, then calculate the distance between each data in the cluster center and determine the nearest cluster, then average averages of all groups, so that the existing process is not the same. After the process is done quickly by using RapidMiner, create clusters in grouping the number of passengers. Where the variable used is the first variable, namely: the number of passengers coming, the number of passengers departing, the number of transits that transit. Where will present data on the number of passengers a lot, medium and small.

References

Alfina, T., Santosa, B., & Barakbah, R. (2012). Analisa Perbandingan Metode Hierarchical Clustering , K-Means Dan Gabungan Keduanya Dalam Cluster Data ( Studi Kasus : Problem Kerja Praktek Jurusan Teknik Industri ITS ), 1.
Application Of K-Means Clustering Algorithm For Prediction Of Students ’ Academic Performance. (2010), 7, 292–295.
Bisilisin, F. Y., Herdiyeni, Y., & Silalahi, B. I. B. P. (N.D.). Optimasi K-Means Clustering Menggunakan Particle Swarm Optimization Pada Sistem Identifikasi Tumbuhan Obat Berbasis Citra K-Means Clustering Optimization Using Particle Swarm Optimization On Image Based Medicinal Plant Identification System, 3(2002).
Handoko, K. (2016). PENERAPAN DATA MINING DALAM MENINGKATKAN MUTU PEMBELAJARAN PADA INSTANSI PERGURUAN TINGGI MENGGUNAKAN METODE K-MEANS CLUSTERING ( STUDI KASUS DI PROGRAM STUDI TKJ AKADEMI KOMUNITAS SOLOK SELATAN ), 2(3).
Putra, R. R., & Wadisman, C. (2018). IMPLEMENTASI DATA MINING PEMILIHAN PELANGGAN POTENSIAL MENGGUNAKAN ALGORITMA K-MEANS, 1(1), 72–77.
Rismawan, T. (2008). APLIKASI K-MEANS UNTUK PENGELOMPOKKAN MAHASISWA, 2008(Snati)

Downloads

Published

2018-10-17

How to Cite

Handoko, K., & Lesmana, L. S. . (2018). Data Mining Pada Jumlah Penumpang Menggunakan Metode Clustering. Prosiding Seminar Nasional Ilmu Sosial Dan Teknologi (SNISTEK), 1, 97–102. Retrieved from https://forum.upbatam.ac.id/index.php/prosiding/article/view/751

Issue

Section

Articles