Data Mining Prediksi Besarnya Penggunaan Listrik Rumah Tangga di Kota Batam Dengan Menggunakan Algoritma C4.5
Keywords:
Algorithm C4.5; Data Mining; Electricity Usage; Prediction.Abstract
Human activity in the use of electricity has increased over time - time. This is due to electrical energy has become an important part for the development of human civilization in various fields including economic, technological, social and human culture. Strategy forecasting the need for electrical energy is needed. People's need for electric energy continues to grow every year. In addition to population growth, the economic growth of a region is believed to be one of the factors affecting the increasing consumption of electrical energy in the area. As the city of Batam in Batam Center area which is an industrial city and the population is fairly solid. Batam Center area includes the central area of Batam city because the area is close to Hang Nadim Airport Batam and Batam International Port Center. Therefore every household should understand the effective use of electricity so that the electricity needs do not become greater than the electricity supply. Data mining techniques with C4.5 algorithm can predict the use of household electricity to more easily regulate the use of household electricity. The sample data is taken as many as 30 correspondent data that use electricity meter in Batam Center area. The number of electronic goods, the number of users, the length of time at home and the area of the house building will be variable in analyzing the data. There are variables Wide of Home Build and Number of Family Members become decision forming tree variable. The calculation results have been tested using Weka 3.7.4 with the same rule result.
References
Rahman, A., & Nanggalo, K. (2015). Prakiraan Dan Analisa Kebutuhan Energi Listrik Provinsi Sumatera Barat Hingga Tahun 2024 Dengan Metode Analisis Regresi Linear Berganda. Jurnal Teknik Elektro ITP, 4(2).
Riyadi, M. A. A., & Fithriasari, K. (2016). Data Mining Peramalan Konsumsi Listrik dengan Pendekatan Cluster Time Series sebagai Preprocessing, 5(1).
Saleh, A. (2015). Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga. Citec Journal, 2, 207–217.
Sari, L. N. Y., Moh. Djemdjem Djamaludin, & Anggi Mayang. (2011). Analisis Sikapdan Perilaku Penghemaan Listrik Pada Sektor Rumah Tangga, 4(1), 82–90.
Selvia Lorena Br Ginting, Wendi Zarman, I. H. (2014). Analisis Dan Penerapan Algoritma C4.5 Dalam Data Mining Untuk Memprediksi Masa Studi Mahasiswa Berdasarkan Data Nilai Akademik, (November).
Siburian, B. R. (2014). Aplikasi Data Mining Untuk Menampilkan Tingkat Kelulusan Mahasiswa Dengan Algoritma Apriori. Pelita Informatika Budi Darma, VII, 56–61.
Tanjung, Y. P., Sentinuwo, S., & Jacobus, A. (n.d.). Penentuan Daya Listrik Rumah Tangga Menggunakan Metode Decision Tree.
Widjayanti, W. (2007). Profil Konsumsi Energi Listrik Pada Hunian Rumah Tinggal Studi Kasus Rumah Desain Minimalis Ditinjau Dari Aspek Pencahayaan Buatan. Enclosure, 6(2), 97–106.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Prosiding Seminar Nasional Ilmu Sosial dan Teknologi (SNISTEK)
This work is licensed under a Creative Commons Attribution 4.0 International License.